metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Ming Zhang,^a Rui-Qin Fang,^a Hai-Shun Wu^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.006 Å R factor = 0.039 wR factor = 0.118 Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[bis[(2,2'-bipyridine- $\kappa^2 N, N'$)manganese(II)]-di- μ -4-hydroxyisophthalato]

The two Mn atoms in the crystal structure of the title compound, $[Mn_2(C_8H_4O_5)_2(C_{10}H_8N_2)_2]_n$, are each chelated by the bipyridine heterocycle as well as by the carboxyl group of the dianionic ligand. Each Mn atom is covalently linked to the singly bonded carboxylate O atom of a second dianion and is datively linked to the carbonyl O atom of a third dianion. The Mn atoms exist in octahedral geometries in the linear polymeric chain.

Comment

Whereas the isophthalate dianion in its metal complexes adopts several coordination modes, the 4-hydroxy-substituted analog displays more possibilities that arise from the extra hydroxy unit (Zhang *et al.*, 2003). The 2,2'-bipyridine-coordinated Co, Zn and Cd complexes of the isophthalate dianion adopt layer structures in which the hydroxy O atom of one polymeric chain binds to the metal atom of an adjacent chain (Zhang *et al.*, 2004). The present Mn complex of the 4-hydroxy-substituted analog, (I), which was synthesized under somewhat more acidic conditions in a hydrothermal reaction, adopts a chain motif in which the hydroxy O atom is not involved in bonding.

The asymmetric unit (Fig. 1) consists of two bipyridinechelated Mn atoms and two hydroxyisophthalate dianions; for both dianions, one carboxyl group is bonded through the singly bonded O atom to one Mn atom whereas the other chelates to the second Mn atom. The doubly bonded atom O9 interacts across a center of inversion (symmetry code: 1 - x, 1 - y, 1 - z) to form an eight-membered $\rightarrow Mn-O=C-O-Mn-O-C=O\rightarrow$ ring. Similarly, the other doubly bonded atom, O4, interacts across another inversion center. The bridging mode of the two carboxyl groups gives rise to the formation of a chain structure (Fig. 2). The hydroxyl group is only involved in intra-anion hydrogen bonding. The structure of the parent carboxylic acid has been recently reported (Cox & Murphy, 2003). Received 28 November 2003 Accepted 2 December 2003 Online 12 December 2003

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

A mixture of manganese diacetate tetrahydrate (0.25 g, 1.0 mmol), 4-hydroxyisophthalic acid (0.09 g, 0.5 mmol) and 2,2'-bipyridine (0.08 g, 0.5 mmol) in water (10 ml) was treated with aqueous sodium hydroxide to a pH of 5. The solution was placed in a 23 ml Teflonlined stainless-steel bomb, which was then heated to 433 K for 120 h. After cooling to room temperature, pale-yellow prisms were obtained in 50% yield. Elemental analysis found: C 54.69, H 3.18, N 7.13%; calculated for $C_{36}H_{24}Mn_2N_4O_{10}$: C 55.26, H 3.09, N 7.16%.

Crystal data

$[Mn_2(C_{10}H_8N_2)_2(C_8H_4O_5)_2]$
$M_r = 782.47$
Triclinic, $P\overline{1}$
a = 9.473 (1) Å
b = 10.694 (1) Å
c = 17.900 (2) Å
$\alpha = 79.413 \ (2)^{\circ}$
$\beta = 86.879 \ (3)^{\circ}$
$\gamma = 64.923 \ (2)^{\circ}$
V = 1613.9 (3) Å ³

Z = 2 $D_x = 1.610 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 883 reflections $\theta = 2.6-26.6^{\circ}$ $\mu = 0.85 \text{ mm}^{-1}$ T = 298 (2) K Prism, pale yellow $0.50 \times 0.24 \times 0.14 \text{ mm}$

5605 independent reflections 4418 reflections with $I > 2\sigma(I)$

 $\begin{aligned} R_{\text{int}} &= 0.016\\ \theta_{\text{max}} &= 25.0^{\circ}\\ h &= -11 \rightarrow 10\\ k &= -12 \rightarrow 12\\ l &= -12 \rightarrow 21 \end{aligned}$

Data collection

Bruker AXS SMART 1K area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.789, T_{\max} = 0.890$
8340 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0654P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	+ 0.961P]
$wR(F^2) = 0.118$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
5605 reflections	$\Delta \rho_{\rm max} = 1.23 \text{ e } \text{\AA}^{-3}$
471 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Mn1-O1	2.344 (2)	Mn2-O4 ⁱⁱ	2.093 (2)
Mn1-O2	2.280 (2)	Mn2-O5	2.062 (3)
Mn1-O9 ⁱ	2.096 (2)	Mn2-O6	2.336 (2)
Mn1-O10	2.088 (2)	Mn2-O7	2.339 (3)
Mn1-N1	2.235 (3)	Mn2-N3	2.277 (3)
Mn1-N2	2.261 (3)	Mn2-N4	2.248 (2)
O1 Mp1 $O2$	56.5 (1)	$O4^{ii}$ Mp2 $O5$	100.1.(1)
O1 = Mn1 = O2 $O1 = Mn1 = O0^{i}$	142.7(1)	O_4^{ii} Mn ² O ₆	109.1(1) 130.6(1)
01 - Mn1 - 010	142.7(1) 83.0(1)	$O^{4ii}_{Mn2} = O^{7}_{O7}$	83.9 (1)
O1 - Mn1 - O10	847(1)	$O4^{ii}$ -Mn2-N3	87.7 (1)
O1-Mn1-N2	121.8 (1)	$O4^{ii}-Mn2-N4$	99.4 (1)
O2-Mn1-O9 ⁱ	87.1 (1)	O5-Mn2-O6	84.7 (1)
O2-Mn1-O10	96.4 (1)	O5-Mn2-O7	101.0 (1)
O2-Mn1-N1	100.8 (1)	O5-Mn2-N3	90.6 (1)
O2-Mn1-N2	173.1 (1)	O5-Mn2-N4	145.9 (1)
$O9^{i} - Mn1 - O10$	111.5 (1)	O6-Mn2-O7	56.0 (1)
$O9^i - Mn1 - N1$	95.8 (1)	O6-Mn2-N3	131.0 (1)
O9 ⁱ -Mn1-N2	93.3 (1)	O6-Mn2-N4	85.6 (1)
O10-Mn1-N1	148.4 (1)	O7-Mn2-N3	167.4 (1)
O10-Mn1-N2	89.9 (1)	O7-Mn2-N4	100.4 (1)
N1-Mn1-N2	72.3 (1)	N3-Mn2-N4	71.7 (1)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, 2 - z.

H atoms were placed at calculated positions in the riding-model approximation (O-H = 0.82 Å and C-H = 0.93 Å), and their isotropic displacement parameters were set to $1.2U_{eq}$ of the parent

Figure 1

ORTEPII (Johnson, 1976) plot of the asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, 2 - z.]

Figure 2

ORTEPII (Johnson, 1976) plot, illustrating the linear chain structure. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

atoms. The final difference Fourier map had a large peak (1.23 e $Å^{-3}$) at about 0.5 Å from atom H5 but was otherwise featureless.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1999); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

References

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cox, P. J. & Murphy, M. T. (2003). Acta Cryst. E59, o1108-o1110.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Zhang, X.-M., Chen, J.-S., Xu, K.-Y., Ding, C.-R., She, W.-L. & Chen, X.-M. (2004). *Inorg. Chim. Acta.* In the press.

Zhang, L.-Y., Liu, G.-F., Zheng, S.-L., Ye, B.-H., Zhang, X.-M. & Chen, X.-M. (2003). *Eur. J. Inorg. Chem.* pp. 2965–2971.